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Abstract. We discuss a method for solving the Schrodinger equation with spherically 
symmetric potentials. The method is based an the use of a certain integral transform for 
the radial wavefunclion. In the representation defined by this transform the Schrodinger 
equation becomes an integral equation of Volterra type. In a number of cases this equation 
can he solved exactly without any use of perturbation theory. The resulting solution is 
represented by a locally finite mm of functions, which can be easily calculated since they 
are defined by integrals involving simple algebraic functions. Far this reason, the method 
i s  well suited far practical calculations. In the present article we derive exact s ~ l ~ t i o n s  for 
the Yukawa and exponential potentials. As an application we calculate the bound state 
spectrum and the scattering cross-sections. 

1. Introduction 

In  this paper we address the problem of constructing exact solutions for the single- 
particle Schrodinger equation with a spherically symmetrical potential. We introduce 
a method based on a new integral transform and discuss its application to two problems: 
the Yukawa and exponential potentials. The essence of the method is a transformation 
of the radial Schrodinger equation into an integral equation which is much easier to 
solve than the original equation. The solutions are given in terms of a locally finite 
sum of functions which can be easily calculated. 

Consider the radial Schrodinger equation for a stationary state of energy E = k 2 / 2 m  

d2 2 d I ( / + l )  +- ( dr2 r dr r2 

where V ( r )  = 2 m U ( r ) ,  U ( r )  is an interaction potential, m is the mass of the particle 
or  a reduced mass of a two-particle system and / = 0, 1, . . . are the angular momentum 
quantum numbers. We consider k to be either real or  pure imaginary in which case 
the energy becomes negative and we are dealing with bound states. If the potential at 
the origin is less singular than rd2 ,  equation ( 1 )  implies that either $(r )=r '  or 
$(r)oc l / r f + '  at the origin. For obvious reasons we are primarily interested in the first 
type of solution. Hence, the correct boundary condition for the above equation is 

However, it turns out to be quite useful to construct two independent solutions $+(k, r )  
and $- (k ,  r ) ,  such that $*(k, r ) K l / r ' + '  at the origin. Since they are independent the 
desired regular solution can be obtained as their linear superposition 

$ ( r )  = A l ( k ) ( K ( k ,  r )  - SI(k)$+(k ,  I ) ) .  (3) 
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Here the constant A,( k) controls the normalization of the wavefunction, whereas S,( k)  
controls the behaviour at the origin and can be determined by (2). We now specify 
the wavefunctions $-(S r )  and @(k, r )  by making the ansatz 

r) = y' e-:'' lom dp e+"'F'(P * 2ik)'P*k(p). (4) 

It will be shown below that: 
(i) The above ansatz and the fact that $'(k, r )  are solutions of ( I ) ,  lead to the 

equation for p d p )  

where V(p) is the inverse Laplace transfonn of the potential, and to a similar equation 
for p-&[p) ,  which can be obtained by changing k to -k in ( 5 ) .  The above equation is 
a regular Volterra equation of the second kind, provided that the potential vanishes 
at infinity faster than r-' .  

(ii) The relation between the S-matrix and a solution of (5) is 

(iii) The condition which selects bound states from other solutions of (5 )  is 

P-:,(m) = o  (7) 
where y 0. 

The method thus amounts to a change of representation from the configuration 
representation defined by (1). to the representation where the radial Schrodinger 
equation is replaced by the integral equation (5). The transformation between the two 
representations is determined by equations ( 3 )  and (4). The method is most effective 
for potentials containing an exponential factor at large distances. The reason for that 
is illustrated by the Yukawa potential V (  r) = -7 e-'o'/r, for which Y ( p )  = -vO(p - p o )  
and (5) becomes 

Because of the delay in the argument of pk(p' -po) ,  this equation is easily solved by 
a finite number of iterations for each fixed p. With this solution, the binding energies 
are calculated by replacing (7) by p-&) = 0 and increasing p until y does not change 
within some accuracy limit. The S-matrix ( 6 )  is calculated in a similar way. 

A similar method was introduced by Martin for the investigation of analytic 
properties of the partial wave scattering amplitudes [1,2]. For the case of an S-wave 
( I  = 0) the integral equation which he derived is similar to ( 5 ) .  In fact, if one substitutes 
p k ( p )  = 1 +j i  d p '  bk(p ' )  into (5) and differentiates once with respect to p, one obtains 
Martin's equation. However, in the case of higher angular momenta, there is no 
immediate relation between Martin's equation (equation (2.9) in [2]) and equation (5 )  
since the former contains Legendre functions of both types in the integrand, whereas 
the latter only simple algebraic functions. The appearance of Legendre functions in 
the kernel of Martin's equation makes it unsuited to the solution of problems such as 
the calculation of the bound state spectrum or of scattering cross-sections. Equation 
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(S), on the other hand, is a relatively simple integral equation and is an efficient tool 
for practical calculations in a number of cases. This will be illustrated below, where 
we derive exact solutions of ( 5 )  for the Yukawa and exponential potentials. These 
solutions are given in terms of a locally finite sum of functions which can be easily 
calculated for any given value of the argument. As an application we calculate the 
bound state spectrum and the scattering cross-sections. 

2. Integral representation of the radial Schrodinger equation 

We derive equation ( 5 )  in two steps. First we introduce a pair of auxiliary functions 
x'(k r) 

$*(k, r )  = r' e""X'(k, r ) .  (9) 

From the radial Schrodinger equation and equation (3) we obtain 

r r 

and a similar equation for , y+ ( r ) ,  which can be obtained by changing k to -k in (10). 
The next step is to introduce the integral transform 

and another one for the potential 

V(r)=/omdpe-"'V(p). 

Both integral transforms are invertible. After integration by parts and a change of 
variable, equation ( I O )  becomes 

[P (W + 2 ik ) l '+ ' dw)  - 2 ( 1 +  1) dp '  ( p  + ik)[p'(w'+ 2ik)l'Pkb') I: 
dp '  Y^(a - p') [p ' (p '+ 2ik)l'Pk(P'). (13) 

Differentiating both sides, then dividing by [p(p+2ik)]'+' and finally integrating the 
resulting equation, one obtains 

= I: 

x 1: dp" V ( p '  - p")[p"(p"+ 2i k)]'pk (p"). (14) 

Since we are dealing with a second-order equation, there are only two independent 
integration constants which are Adk) and Sdk). Therefore ~ ~ ( 0 )  can be chosen 
arbitrarily (except for p,(O) = O  since (14) then has no solutions) and 

P k ( 0 )  z= 1 (15) 



3652 N Poliafzky 

is the most convenient choice. This establishes ( 5 ) .  Despite its uncommon form, it is 
a conventional inhomogeneous Volterra equation of the second kind. This is seen 
explicitly if we integrate by parts with respect to p' to obtain 

Obviously, since the denominator in (5) becomes zero at p'=  0, the equation does 
not automatically represent a regular integral equation. Rather, the potential must 
misf;. r canditinn to c n s ~ c  !ha! no sing.~!arities sppcar. To obtrin !his condition we 
denote the inverse Laplace transform of the potential in the vicinity of p = 0 by 
Y(p)  = Yo+ Y, (p ) ,  where the second term is assumed to vanish at y = 0. Substituting 
in (5), one deduces that it is the first term which leads to an infinite contribution, 
whereas that of the second term is finite. Therefore, a necessary and sufficient condition 
for the absence of singularities in ( 5 )  is 

V(0) = 0. (18) 

To see what this condition amounts to in the configuration space representation, we 
integrate (12) by parts and take the limit r+m. We obtain 

d p  V ( p )  e-" = lim rV( r) - Y(0) (19) 
r-m r-m 

and therefore 

V(O)=O 0 limrV(r)=O 
r - m  

Thus, for the integral equation ( 5 )  to be non-singular, it is necessary and suficient 
that the potential vanishes at infinity faster than I-'. Consequently, equation (5) is 
non-singular for the Yukawa potential, whereas for the coulomb potential it is singular. 
Thus, the transition in which the mass of the exchanged particle is taken to zero is a 
possible way to deal with the singular case. 

A few ohservations now follow on the basis of the above integral representation 
defined jointly by (9) and ( l l ) ,  i.e. by 

+=(k, r )  = r i  e T i l r  d y  e-'"p'(p f 2 i k ) ' ~ , ~ ( p ) .  (4) 

P f ( F ) = P - k ( I L ) .  (21) 

(+'(.k *I)* = $*(k I). (22) 

Since the potential V(p) is real, (5) implies 

From this and (4) we have 

Hence from (3) and from the fact that + ( r )  is real, it follows that 
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Hence we can write 

S,(k) = e2'6J*), (24) 

This suggests that Sl(k) is identical with the S-matrix and indeed one can verify that 
this is the case. 

For the interaction-free case, V ( p )  = 0, equation ( 5 )  implies p k ( p )  = 1. Substituting 
this into (4) we obtain 

J I + ( ~ ,  r )  = r' e"' Idm d p  e-"'p'(p -2ik)'- i/!(2k)' 8 Hi?llz(kr) 

.,.-/L -1- J a - , k ,  rmdiie-~;iil(ii+?ikjlI -;!!(2k.f - v h? 2r  . . I + , / ' \ - ,  u(21  ti,") f 

(25 )  

and 

i l L \  
\A", J, Y \ - . , f - ,  . 

where H$i)l,2 and Hi:)ll2 are Hankel functions. From (3) and 2Jltji2= H ! : ) 1 / 2 + H &  
it follows that 

$ ( r )  = -iAl(k)/!(2k)' ~ ( 2 J l , . , / ~ ( k ~ ) + ( S I ( k ) - l ) ~ i ~ ) ~ / ~ ( k r ) )  (27) 

where JltllZ is the Bessel function. Near the origin this Bessel function behaves as 
r'"", whereas the Hankel function behaves as l/r'+'/'. Therefore, in order for the 
wavefunction $(r) to behave near the origin as specified in (2), the second term in 
the above equation must vanish and we have 

S l ( k ) = l  (28) 

and 

$(r) = -iAl(k)l!(2k)'t'/z (29) 

If the interaction is present one cannot, of course, deduce the explicit form of the 
S-matrix S , ( k ) ,  but one can determine its relation to pk.  To do this we insert (4) into 
(3) and let r + 0. In this limit the asymptotically large values of p are dominant, hence 
we have 

Therefore, a necessary condition for lim,-oJl(r)a r' is 

Now it is well known that if the potential is less singular than r-' at the origin, all 
solutions of the radial Schrodinger equation behave either like $r( r ) o t  r' or $( r ) a  l / r '+ '  
at the origin. Therefore, if in a superposition of two solutions of the second type, the 
coefficients are chosen in such a way as to make the lowest power of r vanish, the 
resulting solution will automatically be of the first type. This means that (31) is not 
only anecessary but also a sufficient condition. Using (21), we can write this condition 
in a more convenient form 



3654 N Poliatzky 

In the case of bound states the energy is negative, E = k 2 / 2  s 0, and consequently 
momentum is purely imaginary, k = fiy.  Consider the case k = iy, where y >  0. The 
wavefunction $-(iy, r )  grows exponentially at infinity, which is unacceptable. Con- 
sequently, we must put A,(iy) = 0 and A,(iy)Sdiy) = -ally),  where al(y)  is finite. 
From (3) we then have 

$ ( r )  = 4 r ) r '  e-Yr Jam d p  e-"'r/.'(r+b)$-,,(p) (33) 

which is the wavefunction of a bound state. If p-&) is not oscillating as p + m  and 
p-;,(m) is non-zero then as r - 0  the above integral behaves as l/r"'. Therefore, a 
necessary condition for l imr+o$(r)x r' is 

P-Jm) = 0 (34) 

or else ~ - , ~ ( p )  must oscillate as p -* m. The same argument as the one given after (31) 
proves that this condition is also sufficient. This condition selects discrete bound state 
energies; without it (5)  can be solved for any value of the energy. The case of oscillating 
p_&) is considered in detail in [3]. Here we will not be concerned with this case 
and hence will be concerned with (34) only. Notice that for the S-matrix we have 

i.e. bound states appear as singularities of the S-matrix. Alternatively we could consider 
the case k = -iy, where y 2 0. We obtain the same equations (33) and (34) with al( y)  
replaced by Al(-iy). The only difference is that now 

SI(-iy) = 0. (36) 

Thus, we notice that in the present context, bound states correspond to singularities 
and zeros of the S-matrix. 

3. Yukawa potential 

The Yukawa potential 

(37) 

was originally introduced into nuclear physics by Yukawa [4]. At that time it was 
thought that the Yukawa potential, which describes the interaction between nucleons 
as mediated by a pion exchange, represents the strong force in nuclei. Today we know 
that only the long-range part of the nucleon-nucleon interaction is dominated by a 
pion exchange and that, at smaller distances, other particles (most probably spin 1) 
enter the exchange mechanism and dominate it. Yet, in some sense, Yukawa potential 
is the most fundamental potential in quantum mechanics since exchange of a particle 
is the most basic interaction mechanism. There have been many attempts to obtain 
exact solutions for the Schrodinger equation with the Yukawa potential, but little has 
been published [ 5 ] .  

The inverse Laplace transform of the potential V ( r ) = Z m U ( r )  is 
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where q = 2 m f 2 / 4 r  and e(&-pLO) is the step function which vanishes for p<po.  
equals 1/2 for p = pLa and is equal to 1 otherwise. Substituting (38) in (5) we obtain 

If we introduce the dimensionless variables 

the above integral equation becomes 

A proper ansatz for the solution of this equation is 

[SI 

,,=O 
R,.(qo,s)= X ( - V o ) " r p p . ( S - n ,  U) (42) 

where [s] is the largest integer which is smaller than or equal to s. Notice that the 
right-hand side of the above equation is a finite sum. Equation (42) can be identically 
rewritten as 

m 

R,(Tn,s)= L (-qa)"O(s-n)rpp,(s-n, U). (43) 
n-0 

Substituting in (41) and comparing equal powers of qo, we obtain the recurrence 
relation for the functions rp,, 

which guarantees that the ansatz is in fact a solution. From this recurrence relation it 
is clear that the functions rpp.(y, U )  are analytic functions in the whole complex u-space 
cut along the negative real axis from -m to -1. Note that the ansatz (42) has been 
chosen so that the coupling constant qa does not appear in the recurrence relation. 
Therefore, once the rp, functions are calculated, (41) is solved for any value of the 
coupling constant. This is an important advantage compared to any numerical solution 
which can be performed for specified values of the parameters only. 

To get some idea of the functions 'p, it is instructive to consider the case of zero 
energy bound states, U = 0. In this case the first few rp, functions can he expressed in 
terms of logarithmic and algebraic functions (see the appendix), while others can be 
approximated with reasonable accuracy. Such approximations are easily found since 
the integrand in (44) is a simple algebraic function. For instance, 

is an approximation which is exact for n = 0 and n = 1 and approaches the exact rpn 
as l t m .  Here(a). isthePochhammersymboldefinedby(a),=a(a+l) ... ( a + n - 1 )  
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and ( a ) , =  1, where a =21+ 1 and a = y +  1 respectively. Another useful approximation 
resulting from the recurrence relation (44) is based on 

“-m Iim [ n ! n ! q ~ ( m , O ) ] ~ ’ ”  = eC / = 0  (46) 

where C =0.577 215 6 6 . .  . is the Euler-Mascheroni constant. Using (45) or (46) we 
can estimate the values of the coupling constant at which zero energy bound states 
appear. From (34), the condition for bound states is 

R,(TJO, m)=o (47) 

where R,(qo,m) is given by (42). Using (45) this gives J2,(2d& =0,  and hence for 
large I we have 2fi=(nr+/-1/4)7r,  where n,  should be identified with the radial 
quantum number. Substituting TJ” = 2mf ’ / 4 7 r ~ ~ ,  we obtain 

where n = n,+ I is the main quantum number. Similarly, from (46) we obtain 

(48) 

Equations (48) and (49) determine the values of the coupling constant for the zero 
energy bound states with an accuracy of about 10-20%. 

From either (45) or (46) it is clear that the speed of convergence of the series in 
(47) must be similar to that of a Bessel function, i.e. quite fast. Moreover, it turns out 
that the speed of convergence increases signiiicantiy if we soive 

R”(TJo,  n m a x + l ) = . O  (50) 

where n,,, is some integer, instead of truncating the series in (47) at n = nmaX. We 
consider n,,,=3 as an illustration. Only three functions are then needed: pp,(3,0) ,  
q2(2, 0) and q 3 ( l , 0 ) .  Inserting the expressions provided in the appendix, we obtain 

R,(qo, 4) = 1 - &+ T& - In 2 )  - & - I n s  -a  In g) = 0. (51) 

Solving this equation for TJ,, we obtain (the smallest root) the value 1.680 34 for the 
ground state, which gives the correct result with an accuracy of about 2 parts in IO4. 
To achieve this accuracy using (47) would require twice as many terms in ‘lo. 

Since in general one cannot express the functions q. in terms of elementary or 
special functions, one has to devise a numerical algorithm for their evaluation. As a 
first step we introduce a new variable z 

Y 

9 

(52) 

where is EE arbitrary p~si!ive n~mbrer. No!ice !hat the variable z remains finite even 
at y 3 CO. To transform the recurrence relations (44) to this variable, we introduce new 
functions & 

2 
O < O < W  

J’== 
z=- 

I + O Y  
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The particular form of the denominator in this equation reflects the main dependence 
of functions 'P. on n for y >> n. The recurrence relation now takes the following form: 

$ 0 ( 5  4 = I ~ A z ,  U)=j:dtf.(t, u)@,-,(t ,  U) n = 1 , 2 , .  . . (54) 

where 

As a next step we divide the interval [0, z ]  in N pieces of length x and replace the 
integration in (54) by the summation according to the trapezoidal rule. As the result 
we obtain the new functions &(x,, U )  which operate on the grid of points xO- 
0, x,, . . . , xN = z and converge to the true functions &(xj, U) in the continuum limit 
as x+O. The corresponding recurrence relation is 

where 

xj=jx and where the step function 0 is defined as above (see ( 3 8 ) ) .  The recurrence 
process starts with (57) and proceeds to the evaluation of ( 5 6 )  for n = 1 and x; iterated 
from x, to x,,,. Then n is reset to n = 2 and the calculation is repeated. These operations 
are continued until n - reaches some - maximal value n m r l .  The result of the whole 
recurrence process is &(xI ,  U), . . . , q,,(xfl, U), n = I , .  . . , n,,,. In order to obtain an 
estimate of the difference between q5"(xj, U) and &(x,, U). one refines the grid by 
replacing A' by 2N and x by x/2 and compares the resulting &(xZ, U), . . . , &(x,,~, U) 
with the previously calculated &(xl ,  U). . . . , &(x,,., U). If the difference is below some 
accuracy limit, then within this accuracy the convergence point can be considered to 
be reached and &(x, ,  U). . . . , &,(x2.,", U )  can be considered to be identical to 
&(x, ,  U), . . . , q5n(~2,,., U). Note that since ( 5 6 )  is an inhomogeneous two-term recur- 
rence relation with respect to x,, its solution is unique and there is no danger of 
instability caused by round-off error. 

As an application let us consider the bound state spectrum, i.e. the relation between 
the coupling constant 'lo = 2mf 2 / 4 ~ p u  and the bound state energy E, or equivalently, 
between 'lo and u=2-/po. Formally this relation is obtained by solving (47). 
In practice this is done by solving (50) for a large n,,,.  Thus 

is the equation determining the bound state spectrum. In table 1 we present the values 
of the coupling constant 'lo at which bound states of zero binding energy appear. 
Throughout table 1 only accurate digits are shown. No attempt was made to achieve 
high accuracy. Therefore for a fixed nmax the accuracy of the values 4,,(z, U )  decreases 
with increasing n. The varying accuracy in table 1 reflects the increasing sensitivity of 
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Table 1. Values of the coupling constant ~ o = 2 m f ' / 4 ~ p ,  ai which bound states of zero 
energy appear in the case of the Yukawa potential. I and n, are the angular and the radial 
quantum numbers. 

I 1  2 3 4 5 6 7 

1.679 8077 6.447 2603 14.342 027 
9.081 9589 17.744 575 29.461 426 

21.894984 34.42041 49.969 57 
40.135 55 56.5141 75.899 
63.8089 84.036 107.2 
92.9171 116.992 144.055 

127.460 155.382 186.28 

~~ ~ ~~~~~ 

25.371 659 39.5388 56.8448 77.2904 
44.261 253 62.1601 83.1682 107.292 
68.5714 90.245 115.00 142.85 
98.317 123.78 152.3 I83 

133.5 162.7 195.1 230 
174.12 207.2 243.3 282 
220.1 257 297 340 

io on Q. with large n at high quantum numbers. The data shown in table 1 were 
obtained with itmax = 20. 

Note that no bound state can exist for io< 1.67, whereas the experimental T N N  
coupling constant is f2/4n=0.08, which corresponds to 7,=0.57. Thus, as is well 
known, the existence of the deuteron cannot be expiainea in a non-reiativistic modei 
based solely on the pion exchange. The rest of the spectrum is shown in figure l ( a ) .  
For the sake of comparison we have included in this figure the four lowest levels for 
the coulomb potential. Figure I ( b )  shows the region of small bound state energies of 
the spectrum shown in figure ] ( a ) .  As one would expect on intuitive grounds, figures 
] ( a )  and ( b )  show that the spectrum at large binding energies is essentially that of the 
coulomb potential, whereas at small binding energies the spectrum is dominated by 
the long-range part of the potential which is completely unlike the coulomb potential. 
Thus, at large binding energies there is an almost perfect degeneracy in /, whereas at 
small binding energies this degeneracy disappears completely. It is interesting to note 
that the degeneracy in / appears at much smaller energies than the energy at which 
the difference between the coulomb and Yukawa spectra becomes negligible. 

A C  0nnth-r nnnlirntinn n C  tha mdhnrl wa m n c i A e r  the r n l r ~ ~ l n t i n n  nf th- c r n t t - r i n o  

cross-sections u l ( k ) .  The relation between the S-matrix Sl(k)  and the cross-section 
u l ( k )  is 

,.,, .....,...-. ..YY.."'.".. ...- ..._..lY.. .,- ..-.......... ...- ". .l.* ""....* L... e 

Equation (32), on the other hand, provides a direct relation between the S-matrix 
S l ( k )  and px.  In terms of 'p. functions this relation reads 

where "'?ikjpO. A s  In :he c2re efthe bocnd s:a:cs, on!y I finite ncmbcr e = e,,, nf 
summations has to be taken into account to achieve a given accuracy. Because of the 
fast convergence of the series in (60),  nmaX is relatively small. Thus, the above method 
of solving (5) provides a simple way to calculate the cross-sections nl(k). In figures 
2 ( a ) - ( c )  we present some typical examples of cross-sections. they are calculated with 
n,,, ranging from 10 to 25. 
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‘IQ 

Figure 1. ( a )  Y = 2 - 1 ~ ~  as a function of v, = 2 m f 2 / 4 n ~ ,  for the Yukawa potential. 
n = n,+ I is the main quantum number. Dotted lines represent the four lowest levels for 
the case of a coulomb potential. (bj The region of small bound state energies of the 
spectrum shown in (a). The assignment o f t h e  angular momentum quantum number I to 
different lines is as follows: 1 = 0  (full); I = l  (long dahses): 1 = 2  (medium dashes); 1 = 3  
(medium dash and a dot); 1 = 4  (medium dash and two dots); 1 = 5  (medium dash and 
three dots); 1=6 (medium dash and four dots). 
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h 4 o  

Figure 1. ( 0 )  Scattering cross-sections far the Yukawa potential for the case of a small 
couplingconstant v , ,=2mf2/4nf i , ,=  I .  7heassignment oftheangularmomentum quantum 
number I to different lines i s  as follows: 1=0 (full); I = 1  (long dasher); 1=2  (medium 
dashes); 1=3 (medium dash and a dot); 1=4 (medium dash and two dots); I= 5 (medium 
dash and three dots): 1 = 6  (medium dash and four dots): 1 = 7  (short dash and a dot); 
1=8  (short dash and two dots); 1=9 (short dash and three dots): I= I O  (short dash and 
four dots). ( b )  The same as in ( 0 )  but for a larger coupling constant = IO. ( c )  The same 
as i n  ( a )  but for a s t i l l  larger coupling constant ~ , = 3 0 .  
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k 4 a  

Figure 2. (continued) 

4. Exponential potential 

The exponential potential 

r r f . \ - - l r  1 1 1 1  
U,,,- Y O C  \"'I 

was originally considered by Bethe and Bacher as a model potential for the ground 
state ofthe deuteron [6]. The inverse Laplace transform of the potential V ( r )  = 2mU(r)  
is 

w 4 = - q ~ ( P - P O )  (62) 

where q = 2mU0 and 6 is the Dirac delta function. Substituting in (5 )  gives 

and obtain 
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Substituting in (65) we obtain the following conditions which ensure that the ansatz 
is in fact a solution 

'po(Y, U) = 1 (67) 

and 

Again, the appropriate choice of the ansatz (66) has ensured that the coupling constant 
vo does not appear in the recurrence relation. Therefore, once the 'p. functions are 
calculated the problem is essentially solved for any value of the coupling constant. 
We emphasize that this is a very important advantage compared to any numerical 
solution which can be performed for specified values of parameters only. 

To proceed further, we first consider the case of zero angular momentum states, 
I = 0. In this case it is readily seen that all of the 'p. functions are constant in y and 
hence the integral in the recurrence relation (68) vanishes identically. The rest of the 
recurrence relation can be easily iterated resulting in 

where ( l+v) ,= ( l+v) (2+v) .  . . (n+u)isthePochhammersymbol((l+v),=l).This 
leads to the well known (s-wave) solution for bound states [6] @ ( r )  ocJ,(2& e-+o'i2). 
In the case of non-zero angular momenta I # 0, after integration by parts the recurrence 
relation (68) becomes 

As in the case of the Yukawa potential, our aim is to convert the above recurrence 
relation to an algebraic one and hence we can use the same strategy. We introduce a 
new variable z 

and new functions & 
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(75) 
2 ( l +  l ) ( n +  u / 2 )  ( 1  +a, ,+u,2i)(1 - at )  1 

a ----(I. 

O - P  
L(1, U) n ( n +  U) ( 1  + a. i ) ( l+a .+ , t )  k ( 1 ,  U)= 

The function f. is the same as in ( 5 5 )  and the further procedure is the same as that 
described after ( 5 5 ) ,  except for the resulting recurrence relation which is now 

4"(Xj, .)=g.(x,, U)4.-,(Xj, v )  

j 

i =0 
+ x  X @ ( W ( j - i ) h n ( X c ,  ~ ) & d x i ,  U) j =  1 , .  . . , K (76) 

where 

4 d X j '  U) = 1 $".CO, v) = 0 n = 1 , 2 , .  .. (77) 

As an application we consider the bound state spectrum, i.e. the relation between 
the coupling constant 'lo= U02m/& and u = 2 - / p 0 .  As in the case of the 
Yukawa potential, this relation is obtained by solving ( 5 8 ) .  The values of the coupling 
constant 'lo for zero energy bound states are presented in table 2. The remarks made 
after (58) also apply tn table 2. The data shown in table 2 were obtained with n,,, = 20. 

n=l n.2 17.3 n=4 n=5 n=6 n:l 

0 20 40 60 80 100 120 

QO 

Figure 3. v = 2 m l p o  as a function of qo= U 0 2 m l d  lor the exponential potential. 
n = n,+  I i s  the main quantum number. The assignment ofthe angular momentum quantum 
number I to different lines is as follows: I = O  (lull); I= 1 (long dashes); I = 2  (medium 
dashes); 1=3 (mediumdashanda dot); 1=4(mediumdashand twodols); 1 = 5  (medium 
dash and three dots); 1=6 (medium dash and four dots). 
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Table 2. Values of the coupling constant qo= U02m/& at which bound states of zero 
energy appear in the case of the exponential potential. I and n, arc the angular and the 
radial quantum numbers. 

n, 

1 

1.445 7964 
7.0490612 

16.312 928 
29.258322 
45.892 42 
66.21807 
90.2365 

2 3 

7.6178155 18.721 751 
16.921 I2 31.52595 
29.879 667 48.076 66 
46.5182 68.3458 
66.845 20 92.323 
90.8638 120.00 

118.575 151.38 

4 

34.760 071 
50.9476 
71.002 I t  
94.837 

122.41 
153.7 
188.7 

~ ~~ 

5 6 7 

55.733075 81.640838 112.483 38 
75.226 I2 104.384 138.433 
98.7133 131.246 168.62 

126.05 162.0 203 
157.1 196 238 
191 233 276 
227 273 314 

One may note that if a, b, c and d are four vertically or horizontally consecutive 
values then they are approximately related by ~ - 3 6 + 3 c - d = 0  and the accuracy 
increases with increasing quantum numbers n, or 1. This relation, therefore, is quite 
useful if one wants to know the values of vo outside table 2. The accuracy of the 

table 2 is 9,=112.483 38, whereas that calculated using the above relation is 'lo= 
112.483 36, so that the error is two parts in lo8. The rest of the spectrum is shown in 
figure 3. Figures 4 ( a ) - ( c )  show the scattering cross-section u , ( k )  as a function of k / p o  
for three different values of the coupling constant io= CJ02m/&. They are calculated 
according to (60) with n,,, ranging from 10 to 25. 

rc!.tion is rea!!y "zing; for inst.ncc, for n,  =? End ! = 0 the P X l C t  v.!ue given in 
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Appendix 

The first few 'p. functions have a relatively simple structure. For 1 = 0 and v = 0 we have 



3665 

103 

102 

10 

NO 

2 1  L 

13 

10" 

10-3 

k 4 a  

Figure 4. ( a )  Scatterin8 cross-sections for the exponential potential for the case of a small 
coupling constant UO2m/&= I .  ?be assignment of the angular momentum quantum 
number I lo different lines is as follows: I = 0 (full): I = 1 (long dashes): I = 2 (medium 
dashes); I = 3 (medium dash and a dot): I =  4 (medium dash and two dots); I = 5 (medium 
dash and three dots); 1 = 6  (medium dash and four dots); I = 7  (shon dash and a dot); 
1 = 8  (shon dash and two dots); 1 = 9  (short dash and three dots); I =  IO (short dash and 
four dots). ( 6 )  The same as i n  (a) but for a larger coupling constant qo = IO. (c)  The same 
as in (a) but for a still larger coupling constant t)O=lO. 
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Figure 4. (continued) 

For I = 0 we have 

and in particulai 
1 en+" 

n ! (1 + u p ) ,  < a"(m, n ! ( l +  ' 

For U = 0 we have 
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